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Abstract: In this paper, we examine the problem of establishing minimum cost production and transportation plans that satisfy 

known demands over a finite planning horizon. Two products, product 1 and 2, can be produced in each of two regions. Each 

region uses its own facility to supply the demands for two products. Demands for product 2 in one region can be satisfied either 

by its own production or by transportation from other region, while no transportation between two regions is allowed for product 

1. Moreover, the transportation in each period is constrained by a time-dependent capacity bound. Production and transportation 

costs are assumed to be non-decreasing and concave. Using a network flow approach, properties of extreme points are identified. 

Then, a dynamic programming algorithm is developed to find an optimal plan. 
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1. Introduction 

In this paper, we consider a production and transportation 

planning problem for which two production regions are 

involved with capacity bounds on transportation between 

them. In each region, a single facility manufactures two items, 

product 1 and 2, each taking a fixed part of the whole 

production amount to satisfy its own demands over the 

discrete � periods, � = 1, … , � . In the problem, we assume 

that the transportation is allowed only for product 2 from one 

region to another. 

A deterministic production and transportation planning 

problem for two products that can be produced in each of two 

regions and transported between two regions was examined in 

[1]. We extend the approach developed in the previous paper 

[1] to time-dependent capacity bounds on transportation. 

Such a model that multi-products are produced by a 

facility in each region and some of them can be transported 

from the other region to meet the demand occurs frequently 

in manufacturing industries such as chemical industry and 

machinery (or food) industry. [1] 

The problem addressed in this paper is meaningful in that 

the transportation capacity is additionally considered to 

impart a sense of reality as an extension of the previous 

model. 

Traditional dynamic lot-sizing models have been 

considered for solving the production and inventory 

problems for a long time. Various models have been 

developed for single and multi-facility problem with a finite 

planning horizon of T periods. [2-6] Moreover, a lot of 

papers have been published handling the problems for many 

different types of production environment. [7-11] 

In 1990s, there have been many efforts to resolve the 

integrated problems considering key business processes of 

production, storage and distribution, from original suppliers 

through end users. [12-14] However, they have assumed the 

cost functions to be linear due to the intrinsic complexity of 

the concave function. But it is more realistic that the cost 

functions are assumed to be non-decreasing and concave 

reflecting the economies of scale. In this paper, based on the 

traditional dynamic lot-sizing problem, we consider 

integrated production, inventory and transportation problem. 

We assume that the cost functions are to be non-decreasing 

and concave in order to represent the realistic cost functions. 

Though the problem suggested in this paper does not resolve 

the general integrated supply chain problem, it is meaningful 

in respect of applying more realistic cost functions to 

somewhat simplified supply chain problem. We consider a 

capacitated production, inventory and transportation planning 

problem for which two production regions are involved and 

time-dependent capacity bounds on transportation are 

imposed. In each region, a single facility manufactures two 

items (or products) each taking a fixed part of the whole 

production amount to satisfy its own demands over the 
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discrete �  periods. In the problem, we assume that the 

transportation is allowed only for product 2 from one region to 

another. 

2. Model Formulation 

The proposed model is formulated using the following 

parameters, decision variables, and cost functions. �	
�: Demand for product � in region 
 at period �, where �	
�s are positive integers 

�	����: ∑ �	�����
  �	
� : Amount of production for product � in region 
 at the 

beginning of period � �	
� : Amount of inventory for product � in region 
 at the 

end of period � �
�: Transportation amount of product 2 from region 
 to 

region � at the beginning of period �, where 
, � = 1, 2 and 
 ≠ � �
�: Transportation capacity of product 2 from region 
 to 

region � at the beginning of period �, where 
, � = 1, 2 and 
 ≠ � �	
���	
� �: Cost of producing �	
�  at the beginning of period � 

�
���
��: Cost of transporting �
� from region 
 to region � at the beginning of period � 

 	
� ��	
� �: Inventory holding cost of �	
�  from period �� − 1� 

to period � 

Production, transportation, and inventory holding costs are 

assumed to be non-decreasing and concave. We can let 

�
���
�� =  ∑ �	
���	
� �"	�# , for all �  under the assumption of 

�
� = �#
�  =  �"
� . 

Using the parameters, decision variables, and cost 

functions, the complete model is presented below. 

(PB) 

minimize F(z) = ∑ $∑ $�
� %��
�� +"��# %�
�# �
���
��+ ∑  	
� ��	
� �]]"	�#  

subject to 

�#
� = �#,
(#� + �
� − �#
� , 
 =  1, 2, � = 1, 2, … , �    (1) 

�"
� = �",
(#� + �
� + �
* − �
� − �"
� , 

�, 
 =  1, 2, � ≠ 
, � = 1, 2, … , �          (2) 

�	+� = �	�� = 0, �, 
 =  1, 2            (3) 

0 ≤ �
� ≤ �
�, 
 = 1, 2, � = 1, 2, … , �       (4) 

�
� ≥ 0, �
� ≥ 0, �	
� ≥ 0, �, 
 =  1, 2, � = 1, 2, … , �  (5) 

The objective is to minimize the total costs incurred, 

specifically the production, transportation, and inventory 

holding costs over all periods. 

The equations (1) express that the amount of inventory of 

product 1 at the end of the period � is the remaining one 

after deleting the demand in a region from the sum of the 

inventory at the previous period �-1 and the production at the 

period �. Similarly, the equations (2) represent the amount of 

inventory of product 2 at the end of the period �. For product 

2, we have to reflect the difference between the 

transportation amount from its own region to another region 

and the amount transported to the other direction. The 

constraints (3) imply that the inventories are not allowed both 

at the initial period and after period T. The constraints (4) 

specify the bounds on transportation capacities for product 2. 

The constraints (5) enforce non-negativity restriction for all 

decision variables. Since the objective function /�0�  is 

non-decreasing concave and the constraints (1)-(5) define a 

closed bounded convex set, there exists an extreme point 

optimal solution. 

3. Solution Approach 

3.1. Characterization of an Optimal Solution 

To derive the extreme flow properties it is convenient to 

view the problem (PB) as a network flow problem, as shown 

in Figure 1. 

 
Figure 1. A Network Representation. 

It can be shown easily that a feasible flow in the network of 

Figure 1 corresponds to an extreme flow if and only if it does 

not contain any cycle with positive flows. [16] Furthermore, an 

extreme flow is composed of some nodes and arcs, where each 

of the nodes has at most one positive input. [3] These extreme 

flow properties lead to the following sufficient conditions for an 

extreme point solution of the given problem: 

i. �#,
(#�  � �",
(#�  � � 
� = 0, 
 = 1, 2 and � = 1, 2, … , � 
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ii. �
�  � �",
(#� = 0, 
 = 1, 2 and � = 1, 2, … , � 

iii. � 
� � � 
* = 0, 
, � = 1, 2 and 
 ≠ �, � = 1, 2, … , � 

However, the extreme flow property clarified in [3] is for 

single source networks, so that it is not always satisfied in our 

model. Therefore, we shall find some additional properties that 

are useful for our algorithm development. 

Let period � be called an inventory point if �	
� = 0 for at 

least one of both �  and 
 , that is, ∏ �	
�	,��#," = 0 . And a 

production (transportation) point of a schedule 0 in region 
 is 

defined as a period � in which � 
� > 0 �� 
� > 0�. 

And also we can see that a feasible solution and consequently 

optimal solution will exist if and only if  

∑ ��� ≥ ∑ ��"�*
��# − �#�*
��# �, for 
, � = 1, 2 �
 ≠ ��, 

� = 1, 2, … , �               (6) 

Henceforth, we shall assume in the remaining part of this 

paper that the equation (6) is satisfied. 

Since the constraints of the problem (PB) define a compact 

convex set and /  is concave, the problem then attains its 

minimum at an extreme point of the set. The constraints can 

also be shown to be totally unimodular. Thus, a solution search 

will be processed for extreme point solutions with integer 

inventories. It will first be discussed about the optimal solution 

properties, which will be used later for an algorithm 

development. 

Theorem 1 Let 3  and 4  ( 3 < 4� be the consecutive 

inventory points. If 0 is an extreme point, then the following 

properties are satisfied: 

i. There exists at most one production point between 3 

and 4 (including 4) in each region. 

ii. There exists at most one partial (positive but less than its 

capacity) transportation period between 3  and 4 

(including 4). 

Proof of (i). It is identical to (i) in Theorem 1 in [1]. 

Proof of (ii). Suppose that (ii) does not be satisfied. That is, 

there exists two periods �# and �" (3 < �# < �" ≤ 4) such that 0 < �
6� < �
6� , and 0 < �
7� < �
7� , ( 
, � = 1, 2, 
 ≠ �� . 

Therefore, there exists 8 > 0 such that 8 = #
" min<�
6� , �
7

* ,% 
. 

Hence, the following two solutions also satisfy (i) and are 

feasible: 

i. �>
6� = �
6� + 8, �>
7
* = �
7

* − 8, and all other variables are 

identical to those of the original solution. 

ii. �?
6� = �
6� − 8, �?
7
* = �
7

* + 8, and all other variables are 

identical to those of the original solution. 

Since the original solution is represented in a linear 

combination of the latter two, each having partial 

transportations at �# and �", 0 cannot then be an extreme point 

solution. 

The case of which �# = �" and 
 ≠ � can also be proved 

similarly. Thus, the proof is completed. 

The results of Theorem 1 lead to Corollary 1, which indicates 

that any optimal solution does not allow mutual transportation 

in a period. 

Corollary 1 If 0  is an optimal solution, then �@�  � �@* =
0, 
, � = 1, 2 �
 ≠ ��, A = 1, 2, … , � 

Proof. Its proof will be done by contradiction. Assume that 

�@�  � �@* ≠ 0. That is, one of the following cases is satisfied: 

i. 0 < �@� < �@�, 0 < �@* < �@*, for 
, � = 1, 2 (
 ≠ ��, A =
1, 2, … , � 

ii. �@� = �@�  �> 0� , 0 < �@* < �@* , for 
, � = 1, 2 (
 ≠
��, A = 1, 2, … , � 

iii. �@� = �@�  �> 0� , �@* = �@*  �> 0� , for 
, � = 1, 2 (
 ≠
��, A = 1, 2, … , � 

From the proof steps of Theorem 1, we see that any feasible 

solution 0  including case (i) cannot be an extreme point 

solution and consequently not be an optimal solution. 

In case (ii) and (iii), the following two adjustments are 

possible for an alternative transportation policy: 

a) If �@� > �@*, then adjust it as �?@� = �@� − �@*, �?@* = 0. 

b) If �@� < �@*, then adjust it as �?@� = 0, �?@* = �@* − �@�. 

These adjustments show that �?@� < �@� and �?@* < �@* so that 

the alternative is feasible. By the way, the alternative policy 

incurs less cost than the original one. This contradicts the 

hypothesis, so that the proof is completed. 

3.2. A Dynamic Programming Approach 

We reformulate the problem (PB) as a dynamic programming 

problem. The approach uses the vector �
 = ��#
# , �"
# ; �#
" , �"
" � 

to represent the state space, but at the period �, �	
� = 0 for at 

least one of both � and 
. 

From the totally unimodular property, it follows that an 

extreme point consists of integer values. Hence, a search for an 

optimal solution is limited to integer values of �	
�  that satisfy 

the conditions, 0 ≤ �#
� ≤  �#��� + 1�  and 0 ≤ ∑ �"
� ≤"��# ∑ �"��� + 1�"��# . Therefore, our goal is to find 

an optimal sequence of successive inventory points and the 

associated solutions of the sequence. The minimum cost 

incurred between any two consecutive inventory points can be 

computed using the aforementioned properties for extreme 

points. 

Let CDE��D , �E� be the minimal cost between two successive 

inventory points 3 and 4. Then, we can define the subproblem 

value CDE��D , �E� as follows: 

CDE��D , �E� = 

minFGH,IGH ∑ J∑ �
���
�� + �
���
�� +"��# ∑  	
� ��	
� �"	�# KE
�DL# , (7) 

so that 

i. Constraints (1)-(5) are satisfied for � = 3 + 1, … , 4, 

ii. ∏ �	
�	,��#," > 0, � = 3 + 1, … , 4 − 1, 

iii. �D and �E  are inventory point values, and 

iv. � 
� and � 
� satisfy the properties described in Theorem 1, 

for all � and 
, �� = 3 + 1, … , 4; 
 = 1, 2�. 

Constraints (i) require a feasible solution over periods 3 + 1, … , 4. Constraints (ii) and (iii) state that periods 3 and 4 

are two successive inventory points with specified values. 

Since all the possible sequence of those �3-4� subproblems 

include all the extreme points of the constraints (1)-(5), there 
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exists an optimal solution of (PB) that consists of a sequence of 

subproblems with CDE��D , �E�  values as defined above. The 

step-by-step procedure to compute each CDE��D , �E�  value will 

be described in detail later in this section. 

Let M
��
�  be the cost of optimal policy over periods � + 1, … , �, given that period � is an inventory point with a 

value �
. If all CDE��D , �E� values are known, the problem (PB) 

can be reformulated as a dynamic programming problem: 

MD��D� = minDL#NEN� $CDE��D , �E� + ME��E�], �D ∈ PD, 

3 = � − 1, … , 1, 0               (8) 

M����� = 0, �+ = �0, 0; 0, 0� and �� = �0, 0; 0, 0�,    (9) 

where PD  is the set of all possible inventory point values at 

period 3 . The equations (8) and (9) indicate a backward 

dynamic procedure starting 3 = � − 1  and ending 3 = 0 . M+��+� represents the cost of an optimal solution. 

Most of the computational efforts involved in solving the 

problem (PB) are spent on computing CDE��D , �E� values for 

each (u-v) subproblem solution. Thus we will concentrate our 

efforts on solving more efficiently such subproblems. 

Let Q	� be the production amount of product � at facility 
 

(i.e., region 
), during periods 3 + 1, … , 4, given �D  and �E  

as successive inventory points. Then, 

Q#� = �#E� − �#D� + ∑ �#
�E
�DL# , 
=1, 2          (10) 

Q"� = �"E� − �"D� + ∑ �"
�E
�DL# + ∑ ��
� − �
*�E
�DL# , 


, �=1, 2, �
 ≠ ��                (11) 

From the assumption that �#
� = �"
� , for all �, we see that Q� = Q#� = Q"� , 
 =1, 2. And let R�  be the transportation 

amount from region 
 to region � (
, � = 1, 2, 
 ≠ �) over 

periods 3 + 1, … , 4; that is, R� = ∑ �
�E
�DL# . Then equation 

(11) can be expressed as follows: 

Q"� = �"E� − �"D� + ∑ �"
�E
�DL# + R� − R*        (11’) 

Since Q#� = Q"� , 
=1, 2, we can see from (11’) that 

R# − R" = 

��#E# − �#D# + ∑ �#
#E
�DL# � − ��"E# − �"D#  + ∑ �"
# �E
�DL#   (12) 

R# − R" = 
��"E" − �"D" + ∑ �"
"E
�DL# � − ��#E" − �#D" +∑ �#
" �E
�DL#    (13) 

Subsequently, if the right hand sides of the equation (12) and 

(13) are not equal, then the subproblem is infeasible. Otherwise 

the subproblem is feasible. Letting R = R# − R"  and |R| 
denote the absolute value of R, we can see from Theorem 1 that 

either R# = |R|  or R" = |R| . In other words, if R > 0 , R = R# but R < 0, −R = R". Further, if any one of Q# and Q" is negative, then the subproblem is also infeasible. 

Moreover, suppose that �#D� ≠ 0  but �"D� = 0  and R* =
0 �
 ≠ �, 
, � = 1, 2). Then, �DL#* > 0  or �DL#� = Q�  is 

required to satisfy the demand �",DL#� . However, since R* = 0, 

it is required that �DL#� = Q�. This implies that in this case, the 

production point in region 
 is fixed at period 3 + 1. 

These properties lead to the following propositions, which 

describe the feasible location of a transportation point for a (u-v) 

subproblem. 

Now, consider the additional conditions such that 

 "
# �ℎ� =  "
" �ℎ�, for all � and ℎ �≥ 0�       (14) 

These conditions can make the solution search rather easy. 

This will be verified in Proposition 1. 

Proposition 1 Consider a �3-4� subproblem satisfying the 

conditions (14). If any feasible solution 0  satisfies the 

conditions that 0 < �
6� ≤ �
6�  and 0 < �
7
* ≤ �
7

*
, 3 <  �# ≤

�" ≤ 4 , 
 ≠ � , 
, � = 1, 2 , then it cannot be an optimal 

solution. 

Proof. For the case of in which 0 < �
6� < �
6�  and 0 <
�
7

* < �
7
*

, we see from Theorem 1 that 0 is not an extreme 

point solution. 

Consider the other case that �
6� = �
6�  and �
7
* = �
7

*
. If 

�# = �", we also see from Corollary 1 that 0 is not an optimal 

solution. Otherwise, there exists 8 > 0  such that 8 =#
" min<�
6� , �
7

* , �"
� , �"
* , �# ≤ � < �", 
 ≠ �, 
, � = 1, 2U, so that a 

new plan, say 0̂ , including �?
6�  and �?
7
*

 is also feasible; 

�?
6� = �
6� − 8 , �?
7
* = �
7

* − 8 , and all other variables are 

identical to those of the original solution. 

From the new feasible solution 0̂ , we observe that the 

inventory holding cost doesn’t change in view of (14) but the 

transportation cost decreases because of 8 > 0. Therefore, 0 

cannot be an optimal solution. 

In the case that �
6� = �
6�  and 0 < �
7
* < �
7

*
 (or 0 < �
6� <

�
6�  and �
7
* = �
7

*
), we can similarly prove that 0  is not an 

optimal solution. This completes the proof. 

The following proposition can be easily showed from 

Proposition 1. 

Proposition 2 If in a (u-v) subproblem, R� − R* > 0, then 

�
* = 0  for an optimal solution for 
 ≠ � , 
, � = 1, 2 , 3 < � ≤ 4. 

Under the assumptions that �
� = �� for all � (
 = 1, 2) and 

the equation (14) holds, the results of Theorem 1, Corollary 1 

and Proposition 1 can be applied to solve such �3-4� 

subproblems and give the associated CDE��D , �E�  values 

discussed earlier. 

The step-by-step procedure to compute each CDE��D , �E�  
value is presented as follows: 

(Step 1) Compute Q#, Q" and decide R�, 
 = 1, 2. Go to 

(Step 2). 

(Step 2) If in each region only period (3 + 1) can be a 

candidate for production point, then let ��∗ = 3 + 1 (
 = 1, 2) 

and go to (Step 3). If in region 
 such a period is not specified, 

fix some period ��∗  (3 < ��∗ ≤ �� ) initially, i.e., ��∗ = 3 + 1. 

Go to (Step 3). Period ��∗  will then be moved in turn from 3 + 1 to ��. 

(Step 3) Once the production point is fixed at period ��∗ in 

region 
, it follows from Theorem 1 that �
H∗
� = Q�. For the 

sake of convenience, we can let ��∗ = X. If R* = |R| (> 0), then 
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we need adjust the demands for product 2 in region 
, where 
, � = 1, 2 (
 ≠ ��. There is no loss of generality in assuming R* = |R| (> 0). That is, determine first the periods that can be 

covered by Q�  or �"D�  and then adjust the demands �"
� ’s to 

give the new demands, �̂"
� , for product 2 in region 
  as 

follows:  

(a) X > �3 + 1� 

i. Let Y
 = �"D� − ∑ �"��
��DL#  and decide �  such that 

∑ �"��
Z��DL# ≤ �"D� < ∑ �"��
ZL#��DL#  ( �Z < 4 ). Then, �̂"
� =[\�  ]0, −Y
^, � = 3 + 1, … , �̃, where �̃ = min ]�Z, X −1. 

ii. Let `� = aQ� + Yb(#,     if Yb(# > 0
Q� ,                       otherwise

% 
If `� ≥ ∑ �"��E��b , then �̂ = 4 , �̂"
� = 0 , � = X, … , 4 − 1 

and �̂"E� = `� − ∑ �"��E��b . 

Otherwise, decide �̂ such that ∑ �"��
d(#��b ≤ `� < ∑ �"��
Z��b , 

X ≤ �̂ ≤ 4. 

Then, �̂"
� = [\�  <0, ∑ �"��
��b − `�U, � = X, … , �̂. 

iii. The other demands do not be adjusted; that is, �̂"
� = �"
� , 

for � = �̃ + 1, … , X − 1, �̂ + 1, … , 4. 

(b) X < �3 + 1� 

In this case, we can let YD = �"D�  and then accomplish the 

above (Step 3)-ii. It follows that �̂"
� = �"
�  for � = �̂ + 1, … , 4. 

(Step 4) As a matter of fact, the inventory �"E�  at the end of 

period 4 can be regarded as the additional demand at period 4. 

So, the adjusted demand at period 4, �"E�  , must be adjusted 

once more by adding the inventory �"E� . That is, update �̂"E� ← �̂"E� + �"E� . 

(Step 5) With the adjusted demands for product 2 in region 
, 

we can decide the possible transportation amount in each period 

using Theorem 1, Corollary 1 and Proposition 2. For this step, 

we can use the shortest route algorithm proposed by Florian and 

Klien [4], additionally, eliminating vertices having inventory 

levels indicating infeasibility, i.e., those unsatisfying �"D* +
∑ �
*f
�DL# − ∑ �"
*f
�DL# ≥ ∑ �
*f
�DL# > ∑ �̂"
�f
�DL# , [ =3 + 1, … , 4. Then, if X = ��, for all 
 (
 = 1, 2), go to (Step 

6), otherwise, X ← X + 1, that is, X is replaced by X + 1, and 

go to (Step 3). 

(Step 6) Determine the optimal production and transportation 

periods and find the associated solution having CDE��D , �E� 

value represented by the equation (7) among the alternatives 

obtained by (Step 1)-(Step 4). 

4. Concluding Remarks 

In this paper, we extended the approach developed in the 

previous paper [1] to time-dependent capacity bounds on 

transportation. Using a network flow approach, properties of 

extreme points were identified. We showed that a production 

and transportation planning problem for which two production 

regions are involved with capacity bounds on transportation can 

be solved optimally using a dynamic programming algorithm. It 

would be interesting to study the added value of a more general 

multi-region, multi-product constraints with capacity bounds 

and more efficient algorithms to find an optimal or near-optimal 

schedule. 
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